

www.planittesting.com

testing consultancy // training + certification // test tools + solutions

Planit Software Testing

Australia, New Zealand, United Kingdom

PLANIT GUIDE

Test Automation
Fundamentals

Platform Tm Framework

Why Automate?

Tool Evaluation and Selection

Return on Investment

Automation Technical Concepts

Automation Tools

Automation Frameworks

Data Generation

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

2

Introduction

The 2015 Planit Index had this to say about Test
Automation: “the number of organisations applying test
automation has increased significantly, climbing 15% [over
three years]. In some of the most active development
industries including financial services, telecommunications
and the software development industry itself, over 40% of
organisations are applying automation as a key part of
their software development lifecycle”.

Why is this? You only need to look at some of the key
changes and trends to understand why. The rise of agile
methodologies is one. Iterative practices mean a greater
requirement for Automation in order to speed up
regression testing. The ability to understand, execute and
make amendments to existing automation suites (though
not necessarily to create complex automation frameworks)
is important for an efficient Agile team.

As Software testers, we need to be increasing our skills
and our knowledge, so that we are capable of adapting to
the new trends. We need wider knowledge, and deeper
skills. Automation is one of these areas we need to focus
on.

This guide aims to make clear what the benefits and pitfalls

are when using automation.

This guide provides information on the following:

• What is Test Automation?

• When and why automation is recommended

• The Platform 4Ds framework which is a structured

approach to the whole test automation lifecycle

• Automation Best Practice

• Behavioural Driven Development (BDD)

• Automation tool evaluation and selection process

• Where and how to automate, whether this is at User

Interface level or at a business logic level

• What automation frameworks are and why they are

important

• What tools do and descriptions of market leading tools

• How to calculate Return on Investment for automation

and why this is important

• Test Data Generation using automation

Automation is not a silver bullet

Test automation can provide great benefits to an organisation and it is tempting to see it as a silver bullet for reduced cost,

increased speed, and increased overall quality. However, it is important to be realistic about the challenges and commitment

that is needed to deliver these goals.

Automaton requires considerable investment up front. It should be regarded as a development project in its own right

which will need justification through a business case. It requires a plan, analysis, design, implementation and testing.

Automation requires continued maintenance. Automation tests must be regularly executed and maintained if the

application under test is updated regularly! Each change applied to a system requires a consequent change to ensure that

the automation pack still works. There needs to be continued commitment to having further development of the Automation

solution.

There will always be a need for good manual testing. Some things just aren’t worth automating; applications which change

constantly or have a limited shelf life are not commercially viable. In addition, manual testers can perform exploratory tests

that drive out hard to find or unusual defects in a way that automated test packs couldn’t.

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

3

What is Test Automation?

 “The use of specialised software that automatically

executes the test steps to verify and report the test

objectives against the requirements.”

Automation Scope

The focus of Test Automation has changed. It is no longer

the case that automation is solely applied by replaying

generic user interactions with the screen. Automation

could now be used to test web service requests and

responses through messaging gateways such as SOAP

and REST. Tools may also be used to check the usability

or consistency of the user experience across different

platforms and to test databases, tablets, mobile phones

and wearables.

Test Automation typically focuses on the areas below:

API Testing –This is testing focusing on Interfaces and

Integration, to ensure accurate and complete transmission

of data. This typically falls into System and Integration

Testing.

Graphical User Interface – Testing of the observable

behaviour in an application for user interface events such

as keystrokes. This type of testing can fall across different

testing layers from System, Integration and Acceptance

Testing.

Data Source/Destination Validation – This includes

testing the correct correlation between inputs and outputs.

This can include databases, spreadsheets, csv and XML

files.

Automation Testing and Tools

Test Automation Requires Test Tools. There are literally

hundreds of Test Automation tools on the market, which

range in compatibility, complexity and price. A review of

the tools sector by type is included to illustrate the variety

of options in the market. Specific examples are shown to

highlight the capabilities of tools. These include:

• HP Unified Functional Tester – Long Time Market

leader, formally known as Quick Test Professional

• Selenium – An open-source and very popular tool,

with code-based scripting capabilities

• Tricentis Tosca – A Business-focussed Automation

tool with internal logic that does not use scripting

• SmartBear SoapUI – A tool to automate API Service

Testing, where the technology uses REST and SOAP

protocols

Automation Testing and Data

There are many potential ways to automate test data,

from manipulation of existing production data through to

ad-hoc generation. Varying methods can be used to carry

this out from custom programming to specialist tools.

This guide provides options for data generation including:

• Application or GUI

• Sub Screen using HTTP

• Service Automation

• Database automation

Automation Testing and Risk

All testing should be risk-based. Functional testing covers

the risks that will result in the system not functioning as

required, based on business priorities and the likelihood of

failure. Risks matter to a business. Risk is the possibility of

a negative or undesirable outcome or event. Testing is

concerned with two main types of risks:

Product or quality risks

Product risks are problems that can potentially affect the

quality of the product itself, such as a defect that could

cause a system to crash during normal operation.

Project or planning risks

Project Risks are problems that can potentially affect

overall project success, such as a staffing shortage that

could delay completion of a deliverable.

There are a number of types of risk that software can

create:

• Organisational, such as efficiency loss and staff

turnover

• Financial, both direct and indirect financial loss

• Reputation, loss of existing or potential customers

and negative publicity

• Legal, in particular the failure to comply with legal or

industry standards

So where does automation fit in? Risks are arguably

greater now than they were.

• Systems are more complex (the weakest link in a

chain of systems can bring the platform down)

• Technology is faster-moving and implementation

lifecycles are shortening

• Users have higher standards and less patience

• There is a greater variety of platforms that can be

accessed for the same functionality. Mobile Devices

and operating systems versions are proliferating

• There is more outsourcing of solutions; virtualisation

of systems and platforms and system boundaries are

becoming blurred

These risks lead to increased requirements towards

improving the quality, speed and accurately of testing.

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

4

 Making the Decision to Automate

Key Reasons to Automate

There may be a number of reasons why automation may be

considered:

• The cost of manual execution is too high and automation

may be able to provide cost savings (over the long term)

• Manual execution takes too long and automation may

speed this up

• Manual execution is too error prone and automation can

reduce this, thus increasing the quality of a product

• Execution quality and timing is ad hoc and variable and

automation may make this regular and repeatable

It is impractical or prohibitive to use manual methods for

example environment builds, database restores, test data

set-up

• We have an overall desire to save time, effort and money

and we believe automation can help us

• In agile projects which require multiple regressions

Goals of Automation

An organisation which decides to automate may have one, or

a number of goals:

• To speed up testing of application releases

• To focus on the reduction of testing costs

• To increase the frequency and the number of regression

tests executed against each build

• To increase repeatability and reliability of regression

• To increase the test coverage per test cycle or release

Potential Benefits

There are a number of potential benefits of implementing a

robust test automation solution. These include:

• Longer term reduction in the cost of testing

• Accelerated time to market

• Reduced cost of quality

• Increased collaboration with developers

• Shorter feedback loop on quality

• Increased environmental readiness

• Improved consistency of testing processes

• Improved breadth of test coverage

• Increased re-use of tests

• Increased confidence in the quality of testing

• Increased job satisfaction

Uses for Automation

The following is by no means an exhaustive list, since one

could add desktop deployment, version control, and release

or build management and even LOGON scripts to the list. The

focus is on functional automation leading to regression. The

following types of automation can be applied to a given

project:

• Generation of test data

• Execution of business cases

• Execution of data flows between systems

• Results Analysis, Comparisons

Guiding Principles for Automation

There are a number of guiding principles that will help focus

any automation project effectively and help it deliver the right

solution:

• Test Strategically

• Test to Mitigate Business Risk

• Test Early and Continuously

• Test Visibly

• Automate for Efficiency

• Test Independently

Success Factors

A good automation test project has the following

characteristics:

• Sponsored by the project executive

• Has a valid business case and clear return on investment

• Regularly reports to the project manager

• Has clear, definable risk-based objectives

• Has proper planning and time allocation

• Engaged with the business analysts

• Means something to the end users of the system

• Links with the application developers (external or

otherwise) and the system architects

• Is supported by the technical experts of the system

• Has all necessary infrastructure support, e.g. monitoring

and diagnostics and administration support, e.g. release

managers

• Provides quality metrics

• Integrates effectively with Test Management or

Continuous Integration tools and processes

Failure Factors

There are a number of factors that may prevent the successful

commencement or implementations of automation:

• No budget/acceptance

• Misunderstandings of the purpose

• Frequent changes or delays of software

• Instability of the target environment

• Lack of relevant automation skills in the organisation

• Limited access to business users

• Unfocused objectives and lack of perceived value

• Lack of continued commitment

• Lack of time

• Inadequate test coverage

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

5

Platform 4Ds Framework

The Platform 4 Ds is a framework that sets out the

management approach to automation. There is a collateral

available which provides support for all phases of the

framework such as development standards, templates and

frameworks. Platform ™ is based on our collective man-years

of experience in this field. The collateral exists in the form of a

variety of templates and tools to support the ongoing

management of the work.

Define

During the Define phase, we set the project up for success,

with a viable business case and plan. This stage typically

includes the following:

• Defining scope and assessing technical feasibility

• Test tool assessment & selection

• Identifying return-on-Investment

• Creating automation approach and proposed framework

• Deciding on the approach to script development and

implementation

• Assessing Remote Execution and Continuous Integration

Strategy

Design

Once the Plan is agreed, the Design phase ensures that the

correct test automation pack is created. This has the following

activities:

• Assessing test scripts

• Test environment preparation

• Test data management and usage definition

• Build and deployment integration

• Reporting and repository management

Develop

During the Develop phase, the automation pack is created.

This means the following activities are to be completed:

• Developing test scripts

• Developing test data solution

• Creating recovery scripts

• Ensuring the quality of the development

Deploy

Finally, during the Deploy phase we start to realise the value

of the investment made. The following activities are to be

completed:

• Executing the test suite

• Integrating into Continuous Integration solution

• Results reporting

• Automation suite defect management

• BAU Handover

Traditional vs Agile Projects

• The 4 Ds framework when taken without further

explanation describes automation within a traditional

(Waterfall or V-model) project, very effectively. However,

for agile projects some or all of the phases and steps are

performed iteratively.

• The Define phase is ideally performed once, however the

nature of Agile can mean that requirements change and

Define must be either redone or adjustments made. This

is the entry point.

• The Design, Develop and Deploy phases are performed

iteratively. Building test collateral and constantly evolving

with the project needs. Test cases are continually

developed and executed to ensure they are supporting

the project and fully maintained at all times.

• Deployments are smaller and higher frequency, as such

supporting tasks for a deployment are performed more

regularly. This includes repeated iterations of the Design

and Develop phase and occasionally Define as required.

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

6

 Automation Best Practice

If we look at how software is designed, we see that it is

comprised of components which are built into functions and

these functions built into systems. In many ways automation

projects should follow the same process. The same pre-

requisites of sound requirements and good design need to be

in place before development starts.

Essential Ingredients

There are a number of prerequisite conditions to enable

automation to be applied successfully. These are illustrated

below:

Effective automation flows from good analysis and design.

Automation should be targeted at specific business needs that

are visible and documented. Automation should not be

undertaken in an ad hoc or exploratory fashion.

• Good requirements lead to good test cases. These then
become viable candidates for automation.

• Poor (or no) requirement or where there is no manual
case, makes Automation significantly harder and will
likely lead to a poor outcome

The automation engineer has to be able to assist in delivering

effective automation, assessing whether an automation test

candidate is used infrequently or is of low value and advising

on whether it is effective to carry out automation out early in

the project lifecycle when the application is volatile.

Script Development Basics

The following is a high level view of which characteristics are

ideally required from automation test scripts:

• Modular - Scripts should be self-contained

o Script #4 shouldn’t stop script #5 from execution

unless they are correlated deliberately

o Known start and end conditions for consistency

• Robust - Additional error handling/anticipation

o Check we are at suitable ‘start’ condition and handle

that as required

o Handle errors elegantly

o To at least return to a clean exit point

• Well Managed - Scripts = code = source/version control

• Extendable - Suitability to integrate into remote

execution environments, suitability to integrate into

Continuous Integration and Release tools

• High Quality - Needs suitable standards, again for

consistency

• Data Separation - Need to separate data from the test

steps and can be simple XLS, XML, CSV files

• Well Structured - Needs dependable preconditions

Automation Framework

An automation Framework is a predefined system that lays

the foundations and building blocks required to represent a

testing process. They can consist of such things like function

libraries, object maps specifying technical properties, and test

data specifics. These reusable components are strung

together to represent a business process (your test script).

The framework can also include a process for test reporting

and Continuous Integration.

Automation Framework Types

There are many varying flavours of framework, however all fall

into one (or more) of the following categories:

• TDD/BDD capable Cucumber (or equivalent) framework

• Keyword Driven (or Action Word) framework

• Data Driven framework

• Page Object Model framework

• Hybrid framework

• Action framework with object repository

Keyword Driven Framework

The most significant feature of the keyword is the insulation of

the business user from the actual automation logic embedded

in code. Testing is exposed to business users through a set of

easy to understand established keywords that map to generic

functions or objects.

The framework maps the actions available to business users,

to one or more functions. Scripts can be entirely composed of

keywords that are highly independent of the application or UI.

Business users can use the handover information to write their

own automation test scripts, utilising their own data and

validation logic.

This technique requires a great deal of preparation, however

existing keyword frameworks can be more readily adapted to

a new application by focusing on the underlying functions

themselves, keeping the keywords the same.

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

7

Data Driven Framework

This framework approach takes test data from data files which

may be .xls, csv, db, xml or json formats for example. This

style of approach is commonly used when multiple iterations

of the same scenario need to be executed. Each iteration uses

varying data from the data files. Validation data (output) can

also be obtained from various data files.

The diagram shows the structure of the framework and its

interactions with the application under test. As shown the

automated scripts access the external data system. This then

gets fed back into the scripts and then steers the application

under test.

Page Object Model Framework

This style of framework uses page object models to represent

sections or pages of the system under test. Technical

properties are specified in these independent models and the

model is called from the relevant test script requiring it.

A page-model framework supports easier maintainability and

usability as the page models represent the application under

test.

The structure can be seen below:

The model layer displayed above holds representative

classes containing technical properties and methods that

steer or interact with the application under test. Frameworks

should also contain necessary reusable utilities and functions

that are common across all pages or sections of the

application under test The model maps 1:1 to the application.

The model maps 1:n to the test cases. If the application

changes you only need to change the model in one place, all

of the test cases will be updated accordingly.

Hybrid framework

A Hybrid Framework is a combination of multiple frameworks

into one solution – the most common approach seen.

An example:

A Page Object Model Framework is used for the structure of

technical properties. This framework can then include a Data-

Driven Framework approach that allows support for data-

driven scenarios while still conforming to the Page Object

Model Framework.

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

8

Behavioural Driven Development (BDD)

What is BDD?

• A technique to facilitate communication and to define the

desired software behaviour

• A common language that can be understood by everyone

in the team, whether they have a technical or business

background

• An agile practice where the acceptance criteria and the

automated scenarios used in both current and future

iterations are based on elaborated user stories

• A supplement to provide concrete business examples,

not a replacement for requirements

BDD is designed to provide input to automated testing. That

is, the BDD’s structured scenarios can be parsed by test-

generating software to create code to test the application.

Automated testing is a powerful addition to the agile

development approach. Agile development iterations produce

ever larger increments of the end product (release). BDD

software tools include Cucumber, SpecFlow and JBehave.

Power of 3

• When the Business Analyst, Tester and Developer

discuss and agree on acceptance criteria

• Discussions are upfront and on-going to adapt and

innovate

• Supports Agile teams through the focus on collaboration

• Also known as the ‘3 Amigos’

• Can incorporate a UX (User Experience) role – this is

then referred to as the ‘4 Amigos’

When do the Amigos meet?

• During sprint planning

• When members of the team are in discussions where a

decision may impact the user story

• During story development, where the amigos periodically

check in together to ensure the story is on-track

• To verify acceptance criteria have been met – this quality

gate can be added to the definition of ‘done’

Writing Acceptance Criteria

Uses the Gherkin notation of “Given, When, Then”

Given – shows any prerequisites of the scenario

When – actions to be performed to reach the test objective

Then – post verification action to validate the outcome

Why BDD?

By incorporating BDD and the associated principles like the

Power of 3 into the sprint planning and day-to-day agile

execution, it promotes early collaboration and feedback. This

works hand in hand with ensuring everyone is ‘on the same

page’.

Using a natural language like Gherkin, all included parties can

understand the desired behaviour of the software – this helps

throughout the sprint to bridge the gap between technology

and business.

The collaborative definition of acceptance criteria and the

shared understanding promotes and aids accuracy in story

points/estimates. While it may be a change to the normal way

of writing test scenarios, implementing BDD provides the team

with a single view of acceptance criteria. As the testable

scenarios are also the acceptance criteria, the usual test case

design layer does not need to be repeated, meaning there is

less risk of incorrect translation from requirements to test

cases. Early formulation of test scenarios also allows early

identification of requirement gaps.

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

9

 Automation Technical Concepts

The choice of where and how to automate used to be relatively

straightforward, but not so in today’s distributed and highly

disparate environments. So we need to consider the following

factors like:

• Could automation be done at a screen (UI) or interface
level?

• Is the system entirely self-contained or is it dependent
upon third-parties and external components?

• Is the system new, an upgrade or a mix of the two?

• Does the automation support both web-based and digital
systems?

• Do the staff have the expertise to manage automation
internally?

Answers to these questions help to drive us towards the
correct automation solution and answer the questions of
where and how.

Tip of the iceberg

The iceberg analogy is intended to convey to business users

the hidden complexity in the application. This helps discussion

on the amount of work required to build an environment or

release that has all the appropriate components within it.

It also facilitates the argument that functional regression goes

beyond what the screen may display.

Think of your current system as an iceberg, 9/10ths of it is

invisible or behind the screen.

In older architectures, system boundaries were relatively clear

and the user interaction was relatively simple. In modern

systems architecture, there are systems with multiple

interconnections, 3rd party links, multiple integrated systems,

and often SaaS (cloud) solutions. Screen interactions and

accesses are more complex with many touch points, external

and ‘rich’ user Interfaces.

The typical technical architecture of a modern system is

shown schematically in the following diagram. It is potentially

valid to automate at any level.

User interface (UI) based automation

Driving the user interface is the most common method of test

automation, found in tools like UFT, Selenium, TOSCA and

many others. These tools interact with screens, buttons, text

boxes and mouse clicks.

The major drawback of this is the time spent to understand,

deliver and execute a UI solution and the lack of certainty that

the interface will be supported out of the box.

Experience has shown that just because an app is web-based

doesn’t mean automation will be simple. The only sure way to

know that a given tool supports your application is to trial it

(perform a proof-of-concept). One of the key concepts that

underpins successful automation is to understand technically

how the tools works with a particular combination of

technologies.

This means that UI automation tools have to be able to

intercept and interpret actions such as open a window, click

on a button, or enter text. Visually this may appear simple, but

exactly how that is done varies hugely under the covers.

Pros Comments

It’s the most intuitive to
understand

So it’s understood by
stakeholders or non-technical
audience

It’s the most complete end to
end approach

So we are exercising all
downstream components in our
tests as well

Cons Comments

It can be
unpredictable/unreliable

Error handling, warm restart

Vulnerable to UI changes Although object maps and
frameworks reduce some pain

Most costly to execute time
wise

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

10

Business Logic Layer Automation

In a project where the screens have yet to be fully developed

it may be better to look at automating ‘behind the scenes’ at

the interface level. If the screens are a work in progress and

liable to change, some level of UI automation re-development

would be inevitable.

HTTP (Web Service) Automation

If the application is web-based, automation can also hook into

the underlying HTTP messages that flow between the client

(web browser) and the back-end (typically a HTTP web

server) before progressing onwards to messaging or service

layers.

This type of automation is common particularly in performance

testing. This is because it is the most reliable and scalable way

of simulating hundreds of different users.

In a web application a single screen may trigger one or more

HTTP requests, which need to be simulated and

parameterised

At first sight it may seem irrelevant for functional testing, but

in some circumstances HTTP can be used to drive regression,

especially if we focus on services.

Pros Comments

Don’t need to wait for the GUI
to be ready

We can validate at the
service level

Quicker to execute than
normal GUI automation

Cons Comments

Large amounts of correlation
may be required

A service may require
another service to execute
e.g. Authorisation

It’s less intuitive than the
front-end GUI

Time taken to develop may
be longer than screen-based
solutions

Automation of APIs and Services

Automation has driven deeper down the technology stack,

and moved away from the delivery of the User Interface (UI).

Service-based automation is a good candidate for automation

because of the standardisation of web services based on

HTTP / SOAP, and protocols like REST, MQ, JMS etc.

On some projects the initial development effort may

concentrate on system-to-system interfaces ahead of the user

interface. Indeed the project may need to support multiple

interfaces (browsers, both PC and mobile). There has also

been a significant rise in Service Virtualisation tools like IBM

Green Hat or CA Lisa, which stub or simulate parts of the

interface e.g. System A talks to System B (which hasn’t been

built yet). The tools stubs ‘take the place’ of System B until it

is ready.

Pros Comments

There is a common standard
as systems become more
‘stretched’

Relevant to today’s
disparate architectures.
Services are self-describing

It breaks away from the pure
screen approach, and is less
cumbersome than HTTP

Avoids the inherent
problems in testing at
screen or sub-screen
HTTP. It’s a clean approach

It’s now supported by test
tools such as SoapUI, CA
LISA, IBM Green Hat, HP
UFT

Wide-ranging support for
web services, and allows us
to stub or mock when
systems are limited or
unavailable

Cons Comments

It can be cumbersome to
program

If realistic business cases
are needed

Not end-to-end in its entirety

More suited to system-to-
system tests

It’s less intuitive for business
folks

Works best at system or
integration phase

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

11

 Automation Tool Capabilities

Test Automation requires a test tool! There are a large number

of tools available on the market. These tools differ; by look and

feel, by capability, by the scope of what they can automate

and by how they record an automated script. All tools have a

similar base set of capabilities; what differs is how they deliver

these capabilities.

Creating new projects

Each tool has a different way of storing, categorising and

displaying how the tests are organised. Most of this is

generated by the tool. However this is done, the first step in

using a tool is normally to create a project.

Record tests using record-replay

Record-replay (or capture-replay) is the most basic form of

test automation. It is simple to use but is very limited in what it

can achieve. This is a simple activity of starting the record

process, manually performing the operations you want to

record and then stopping the process. Some tools are only

record-replay but conversely some tools do not have this

capability, instead having a requirement for script

development or keyword development. For those tools that do

record-replay this is not generally regarded as good practice

and typically used only a start to the automation process by

capturing flow.

Once you have captured some activity, you need to

understand what you have created. A record-replay activity

may create the following automation project components:

• Script - end to end representation of what is recorded and

what will be played back

• Screen objects – what the application has identified as

the objects it needs to interact with

• Actions – keyword or script language components

describing what the script is doing

Amending record and replay tests using

script or keyword languages

For those tools, which allow this, an automated test using

record-replay can be progressed by directly amending the

keyword script or language script that is created. It is this

script that allows loops, logic and validation to be added and

a single test to become a suite of tests. It also forms the basis

of modularity (see later). Key considerations include:

Keyword scripting tends to be proprietorial, differing by tool

and easier to understand than scripting. Keywords allow logic

to be incorporated and data to be referenced

Scripting is real code and needs real coding knowledge. It

provides the advantage of being able to use all the capabilities

of code and comes with all the complexities. A good automator

needs a good understanding of coding best practice,

methodologies such as object oriented design, and coding

standards.

For tools which rely on scripting languages, many do not have

a code interface, instead relying on integration with Integrated

Development Environments (IDEs) such as Visual Studio (for

Microsoft Technology and Eclipse for Java technology).

Record tests using scripting, BDD or a

keyword language

More experienced test automators or developers will go

straight into a scripted automation solution using the tools

script interface or using an IDE and Unit Test framework that

the tool integrates with. This has a number of advantages:

• It is quicker to implement than the process of recording a

script, checking the recorded components, adding logic,

and finally testing the reworked script. An experienced test

automation specialist can write code quickly and be able

to re-use code from previous activities.

• An off the shelf Unit Test framework provides the ability to

integrate with the developer’s unit test effort, easy test

execution and reporting. Additionally it offers integration

interfaces with test management, CI and monitoring tools.

Being off the shelf it significantly accelerates framework

development.

• Re-use of code lends itself to more structured and modular

approaches to automation. Using coding standards and

best practices, a test automation solution can be created

with as high a quality as the code it is intended to test. This

is why test automation practitioners can be called

“developers for test”.

There are some considerations:

• Large frameworks require significant and advanced

programming skills. It can be hard to find this within the

skillset of a typical testing team.

• Like any development effort defects will be introduced

during the development process. This can be frustrating

and inefficient if a proper development lifecycle is not

being followed.

Results Validation

All tools provide a capability to check whether the results of

the tests are as expected. This comparison can be on the

screen, database, on a file, or indeed anything that can be

checked. The following considerations should be taken into

account:

• Not everything can be or should be checked. Only

compare the most important results. Manual checking will

still be needed in most test projects.

• Validation can be dynamic (during execution) or post

execution

• We need to understand what to do when there is a

deviation. This is known as error handling and must be

designed into the solution.

• Thought should be put into how results are reported

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

12

Modularity

Modularity is the process of taking often re-used elements

such as login information and creating a separate script. All

tools allow modularity through their interfaces or via IDEs.

Modularity:

• Needs to be planned in advance

• Increases re-usability and speed of development

• Reduces maintenance as amendments need to be made

in one place only

• Reduces complexity of scripts and increases clarity

Parameterisation and data input

Parameterisation allows the same cases to be run with

different data. It is good practice to separate test flow steps

from actual test. This allows re-use which speeds up the test

development effort. Some tools have their own interfaces to

store data, others can point to spreadsheets or external

databases. Open source tools usually implement a Cucumber

or equivalent framework. This uses Gherkin to specify the test

cases in natural language and allows for them to be stored in

feature files that contain scenarios. These can then be

paramaterised.

Some things need to be considered:

• Different data will often drive different flows in an

application. Data is therefore intrinsically linked with the

input of logic into the script.

• Test data needs to be well managed to ensure it remains

fit for purpose. (this is also true for manual testing)

Error handling

Error handling is:

• Handling failed test cases, where an actual result does not

match the expected result

• Handling script failure, where the automation pack no

longer functions correctly

When planning error handling you need to understand how

robust you want the script to be and what to do in the event of

each error (log and continue, wait and try again or stop).

Addition of logic

The addition of logic to automation scripts is needed in all but

the most simple automation projects as application flow is not

linear. Different screens or functions are visible dependent on

choices made by the user. Automation needs to cater for this.

This is typically done through keyword or script amendment,

though tools with codeless interfaces also allow logic through

hierarchical or tree notations.

Synchronisation

Synchronisation is ensuring that the automation script can

handle the time taken for the application to perform. If the

script runs too fast, then it will be trying to perform actions on

objects or functions that are not available. Too slow and some

of the benefit of automation is not realised.

Synchronisation can be performed in a variety of ways:

• Inserting explicit delay e.g. number of seconds

• Inserting commands which wait until something has

happened

Scheduling and Execution of tests

Preparation before running a test automation pack is

important. We don’t always want to run a full pack. Choice of

how much to execute is based on the objectives of the run

and how much change there has been. A smoke test for

example will only test a small subset to ensure the

environment and application is capable of suporting further

manual testing.

Before execution we often need to set up the run; this will

include things such as pointing to the correct enviroment and

data selection.

Some tools allow time scheduling so that tests can be run out

of hours and distributed amongst multiple machines.

Dependent on the robustness of the suite, it may be better to

monitor the run, rather than leave it unattended.

Automation can be scheduled as part of Continuous

Integration, so the timing of execution wil be determined by

this framework. In practical terms, this means that execution

will be triggered from not just the test tool itself but from the

IDE, the CI tool or from other integrated test mangement tools.

Reporting

Tools often vary in the amount of reporting functionality

provided. Reporting is usually provided at the end of

execution, though it is possible to have reports generated on

the fly during test execution.

Different reporting levels are required depending on the

stakeholders the report is meant for. For example an

Automation engineer may require detailed debug information

to do root cause analysis on a test failure. A Test Manager will

only need high level information such as the test cases

executed and the pass and fail rate.

Tools typically provide the following reporting functionality:

• General stats such as which and how many tests were run,

as well as and how long each test took

• Reports on validations, how many tests passed or failed

and what the discrepancies were. Many tools can be

configured to provide screenshots for each step, or on

failure

• Which test environment was used

• Graphing or visual representation of the run

• Some report into other tools such as the IDE or test

management tools

• Some can be configured to directly email reports at the end

of the run

Unique features

Each tool has unique features that are marketed as improving

user experience, effectiveness or efficiency. In some cases

these are truly unique to the tool, in others variations are of

one of the capabilities detailed above.

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

13

 Tool Evaluation and Selection

The choice of tool greatly impacts not only the development of automated tests but also the engineering process within an

organisation. In order to select an appropriate tool the following steps will be taken.

Automation Tool Requirement

A good way to gather information about tool expectation is to

meet with analysts, architects, environment specialists,

developers and try getting answers to the below questions:

• Is there already a tool?

• How will the organisation use the tool?

• Is there a budget?

• Who will be the main owners of the tool?

• What protocols and technologies does the tool need to

support?

• Do technical or non-technical users use the tool?

• What are the core features the tool must have?

• Does the tool fit with the overall development

methodology within the organisation?, e.g. Agile or

Waterfall

The automation engineer should assess the systems and

software architecture that are commonly used across projects

and environments within the organisation and also should

consider the following factors:

• Other projects may use different technologies and may

have a current or future need for automation

• Automation tool selection may need to support multiple

message formats for different application types

• The methodology used for development within the

organisation

• What stage of testing is Automation being introduced at?

E.g. at Requirements, development or after the manual

testing phase is completed

Ideally, an automation tool should not be selected for just one

project, but rather cater for significant projects and

applications within the organisation and be a strategic

decision.

Assessing the Viability of Automation

Process Viability

• The test process is clearly defined and facilitates the use

of existing test artefacts

• Test automation requirements are clearly defined

• Test automation has a defined architectural approach

and supporting design

• A robust implementation that provides appropriate levels

of reliability

• Repeatable automated tests

• Minimisation of software change impacts to the

automated tests

• Clearly understood and documented levels of

interdependency

• Test automation standards are defined and followed

• Test automation effort must be planned, documented,

monitored and measured

• Clear definition of roles and responsibilities for use of the

developed framework and its ongoing support and

maintenance

• A champion has been clearly identified within the

organisation to perform a cultural change management

role to facilitate adoption and use of the framework within

the organisation

• Test environment is controlled to ensure a high level of

stability which enables repeatability

Technical Viability

Some technologies or environments do not extend to

automation i.e. There are technical limitations of the

automation tool interacting with the current technology stack

or environment required to be tested.

Type of Testing needed?

The types of tests needed by the project will greatly determine
the selection of the tool. Types of tests may include:

• Unit testing

• Component/System/Integration - Regression testing

• Usability testing

The Test Automation Pyramid (on the next page) gives a

visual representation on where test automation is mainly

focussed. The widest coverage is with the unit tests and then

the acceptance tests, with most exploratory testing being

manual. It should be noted that there are some tests where it

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

14

will never be economic to automate, to understand this all

tests should go through an analysis phase before they are
automated.

Tool Shortlisting

A Shortlist of tools should be created that matches the

requirements gathered. In addition the tool should be

considered as a long-term investment by the organisation that

can be used for a number of different projects and

departments. As a result, the automation engineer should

consider not just the project requirements but the long term

greater organisation’s requirements. The shortlist should

factor this in.

The shortlist will typically describe 2 or 3 suitable tools and the

differences between them. The Pros and the Cons can be

described and it may be that a likely recommended tool

emerges.

Overview BDD support

Pros Continuous Integration
support

Cons Test Management tool
integration

Manual Testing Capabilities Supported Technologies

Test Management and
Reporting

Supported Browsers

Traceability of
Requirements

Cost

Defect Management
support

Mobile Testing Capabilities

Optimised Test Case
Design

Codeless User Experience
or not

Data-driven Testing
Capability

Programming Languages
Supported

Vendor Analysis

Other factors should be taken into account with regards to who

owns the tool as not all vendors are created equal.

• Who are the vendors?

• Where are they based?

• What is the development roadmap for the tool?

• What support, tutorials, training do they provide?

• Is there an online community

• How reliable is the tool?

• What is the current version?

• Are there regular updates?

Budget Constraints

What is the testing budget and how much has been allocated

to the purchase of an automation tool? This information is

critical in the decision making process, as automation tools

have a wide range of costs, some being free and open-source

and others being commercial with costs related to licenses

and support. The test engineer should evaluate the following

cost factors:

• Cost of tool purchase/licenses

• Cost of training or recruiting automation testers

• Cost of support

• Maintenance fees (subscriptions)

• Add-ons/plug-ins

• Future scalability requirements

Proof of Concept

A Proof of Concept (POC) is a focused evaluation exercise

with the end goal of being able to conclude the validity of a

tool or concept prior to a streamline implementation. It is a

highly recommended preliminary activity when selecting a

new tool and answers the following questions:

• Have we confirmed that it meets our Key Business

requirement?

• What amendments or support are needed to meet our

technical requirements?

• Can the tool be implemented successfully in the target

organisation?

A POC typically takes up to 3 - 5 days for each tool and follows

the following steps:

• Implement the tool onto the test environment

• Select a valid business process or test script to automate

• Record the script in the automation tool

• Execute the script

• Produce a final report and recommendation

Test

Automation

Pyramid

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

15

 Automation Tool Examples

The automation tools market is very diverse and crowded. In this section of the guide some of the leading contenders are described,

identifying relative strengths and weaknesses and other factors which differentiate the tools.

Popular Tools

Selenium
Selenium WebDriver is an open source tool used for automating websites and supports a number of
different programming languages. It requires an Integrated Development Environment such as
Microsoft Visual Studio when using C# or Eclipse when using Java. It is usually used in conjunction
with a Unit Testing Framework. Selenium IDE is a Firefox browser plugin that adds record-replay
functionality to Selenium. Selenium has a very strong market presence due to the speed of its
updates, support for most languages and absence of initial outlay. Selenium can also be integrated
with API/DB/Mobile testing drivers to deliver cross functional testing capability. However, support is
only provided through an open source community and not via a vendor.

HP UFT
Formerly Quick Test Professional, HP integrated API testing capability and renamed the new offering
HP Unified Functional Testing (UFT). It supports both record-replay and scripting approaches (using
VBScript). UFT supports a wide range of technologies in addition to APIs, these include but are not
limited to web, SAP, Siebel, native windows, .Net, Java and Terminal Emulators. In addition, it
integrates with the HP Application Lifecycle Management (ALM) Test Management toolset. HP UFT
has mobile technology capability with HP Mobile Centre.

SmartBear Test
Complete

Test Complete is primarily a scripting based automation tool with record and playback functionality.
It can be implemented in multiple languages. It supports a range of technologies including web and
desktop applications, and offers mobile testing capability. It has two key additional useful functions;
a visualiser which enables the tester to add steps to an existing script by navigating through a
previous recording, and a data generation facility which creates data using standard popular formats
such as e-mail addresses and post codes.

Tricentis Tosca
Tricentis Tosca Testsuite defines itself as a third-generation technology using a model-based
approach; differentiating itself from record-replay tools or tools that use code-based technology.
Tosca has “Dynamic Steering”, which allows the design and specification of manual and automated
test cases in a purely business-based way. The technical interface to the application, the models, are
called modules. These are then linked to the test cases. This allows the test cases to be maintainable
by testers that do not have technical knowledge. Test case design is supported by Tosca by means
of combinatorics-based test creation of mapped flows. Tosca supports a wide range of technologies
including SAP and also now has elements of Test Management designed into the suite, as well as
mobile testing capability.

Ready! API

Ready! API is a suite of tools ranging from security and performance (Secure Pro & LoadUI NG Pro)
to service virtualisation and automation (ServiceV Pro & SoapUI NG Pro). SoapUI NG Pro in particular
provides the capability to test API protocols such as SOAP and REST. The tool’s point-and-click
capabilities allow a user to incorporate the platform’s functionality into their testing without the need
for complex scripting. SoapUI NG Pro supports integration with unit testing frameworks such as
JUnit, and build automation tools including Apache Maven.

Ranorex

Ranorex is a test automation tool that supports a wide range of technologies across desktop, web
and mobile. Ranorex has script-free testing for non-programmers and a professional API for C# and
VB.NET. It also integrates with Visual Studio. Ranorex supports cross-browser testing on common
browsers and can handle common web technologies. It supports mobile operating systems like
Android & iOS. It helps test mobile applications on real devices and emulators when they are
connected to a PC through USB or Wi-Fi and eliminates the need to Jailbreak mobile devices. It also
supports cross platform execution of tests written for websites on desktop to run on mobile
browsers. It can be integrated into any continuous delivery process and a test suite can be triggered
from any continuous integration systems or any test management tool.

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

16

MicroFocus Silk
Test

MicroFocus Silk Test is marketed at teams with multiple skills sets, with a codeless interface as well
for less technical team members, and IDE integration for more technical staff to use. The latest
version of Silk Test incorporates, mobile testing technology into its platform, rather than having
separate applications for desktop, browser and mobile testing. It relies heavily on its device lab
functionality to manage multiple devices with the same test. It provides a range of tools for
continuous integration. Silk Test provides support for a large number of platforms and applications,
as well as the ability to use C#, Java and VB.Net. Silk Test has its own scripting language, 4test.

Cucumber

Cucumber is an open source tool which supports automation of acceptance test cases for web
applications as part of Behavioural Driven Development (See Appendix b). Cucumber functions as a
testing framework, rather than a tool itself. Cucumber uses a Business-focussed syntax called
Gherkin to define tests which allows project team members (Business Analysts, Developers Testers)
to use an easily understandable format to communicate. Cucumber integrates with Unit Test
Frameworks and automation tools and can use programming languages to automate testing direct
from the Cucumber Interface. Typical deployments use Cucumber with Selenium or Cucumber with
Java.

SpecFlow

SpecFlow calls itself – Cucumber for dot net (Microsoft technologies). It too supports automation of
acceptance test cases using Gherkin Syntax in order to support BDD. It uses Microsoft Visual Studio
as an IDE and can therefore use Visual Studio functions such as debugger support. The output of a
project is usually an MSTest or NUnit test assembly. This provides provision for integration with CI
or CD (Continuous Integration and Continuous Development) solutions.

MicroFocus Silk
Mobile

Silk mobile is a mobile automation tool for testing native apps and mobile websites with record and
playback functionality. It provides functionality to write code-free programming. It supports several
mobile operating systems like Android, iOS, Symbian, Blackberry & windows mobile. It helps test
mobile applications on real devices & emulators when they are connected to a PC through USB or
Wi-Fi and eliminates the need to jailbreak mobile devices. Silk Mobile supports Native object
recognition, Dynamic Object recognition and Optical Character recognition and also provides
features to run tests on multiple devices in parallel thereby decreasing the amount of test time and
speeding up the release process. It also provides functionality to implement tests across a variety of
test scripting programs like Silk4J, Silk4Net, JUnit, NUnit, C#, MSTest, VB.Script, UFT (QTP), Ruby,
Python or Perl and be a part of the continuous delivery process.

Appium

Appium is an open source mobile test automation framework for use with native, hybrid and mobile
web apps. It drives iOS and Android apps using the WebDriver protocol. It allows you to run the
automated tests on actual devices, emulators and simulators when they are connected to a PC
through USB or Wi-Fi. Its API can be extended to allow users to write & execute tests for wearable
devices like Apple & Android watches. Appium provides functionality to implement tests in a variety
of programming languages like C#, Java, Python, PHP & JavaScript. Appium doesn’t dictate the test
automation framework to be used and can be used with any test automation framework. The Appium
clients are simple extensions to the WebDriver clients and most of the Selenium WebDriver
commands are available to Appium.

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

17

 Return on Investment

Understanding the likely return on investment from providing a test automation solution is necessary to develop the business case

that will help provide funds for the automation project. This will be done by understanding some of the technical and business factors

that influence the environment and technology.

Understand the Automation Opportunity

In order to successfully implement an automated testing

solution, there will need to be technical specialists, as this is a

task that the business representatives will not have the skills

or the time for. Additionally, consider the software

development maturity level of the organisation; it may not be

feasible to start the creation of a large scale test automation

framework if the organisation is not mature enough to support

it. In this case it may be more suitable to suggest a simpler

solution such as a record and replay pack rather than a full

automation framework (though this is by no means always an

effective or recommendable solution). Also, we need to

consider why automation is wanted and whether this is

justifiable, for example whether it is for a quick win or for a

long term benefit? Finally, we will need to consider what tools

will be used for automation and the costs of these.

This leads to a list of factors that will provide input into the

building of a business case for automation. There are:

• The business drivers for automation

• The objectives and whether these are realistic

• Application stability and consequent likely repeatability

• Test Environment costs considering in-house, virtual or

cloud options

• Tools, options include ‘open source’ vs commercial

• Current Manual and automation solutions and how much

cost is associated with these

• Any Current investments which may become obsolete

• Cost for both Initial acquisition and ongoing maintenance

• Skills needed to implement and other Technical

dependencies

• Whether there is easy access to business users and

other functional SMEs

• How much will automation be used, taking into account

the frequency and duration of cycles, releases and

patches?

• Are there any costs associated with training or upskilling

current staff? Do additional resources need to be brought

in?

• Lifetime of Application Under Test – Will the

application be redundant soon

Automation of 100% test coverage may not be the best use of

time and money; Business value, Risk, Feasibility and Viability

all need to be taken into consideration when deciding what to

automate.

Focus efforts on automating areas or functions that provide a

higher Business value to the business and/or areas of the

application frequently used by customers.

The level of risk of the application under test should be

considered concentrating on understanding areas of the

application which are frequently used and/or where a high

number of errors are seen.

Assessing the Viability of Automation

Process Viability

• The test process is clearly defined and facilitates the use

of existing test artefacts

• Test automation requirements are clearly defined

• Test automation has a defined architectural approach

and supporting design

• A robust implementation that provides appropriate levels

of reliability

• Repeatable automated tests

• Minimisation of software change impacts to the

automated tests

• Clearly understood and documented levels of

interdependency

• Test automation standards are defined and followed

• Test automation effort must be planned, documented,

monitored and measured

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

18

• Clear definition of roles and responsibilities for use of the

developed framework and its ongoing support and

maintenance

• A champion has been clearly identified within the

organisation to perform a cultural change management

role to facilitate adoption and use of the framework within

the organisation

• Test environment is controlled to ensure a high level of

stability which enables repeatability

Technical Viability

Some technologies or environments do not extend to

automation i.e. There are technical limitations of the

automation tool interacting with the current technology stack

or environment required to be tested.

Assessing Manual Costs

At this point, we consider the cost of continuing with ongoing

manual testing against the implementation of the automated

execution. It is important to set costs realistically and also to

set expectation levels carefully.

Example: Calculating Budget Savings Baseline Values

• Average resource rate is $480 per day or $60 hour (8 hour

day)

• A manual test case takes an average of 2 hours to

complete

• Therefore, costs $120 (i.e. $60/hour times 2 hours)

• 4 x manual test cases per day (i.e. 8 hours divided 2

hours)

Assessing Automation Costs

Initial costs include tool acquisition, training, and script

development or framework enhancements. As systems

change over time, a % factor should be applied to assume that

some of the core sets of test assets will incur a maintenance

cost too.

One thing to remember with budget saving is that not

everything can be automated. Current figures suggest that

typical automation coverage of 20-30% of a regression set can

be automated, although some tools claim to have up to 60%.

Future Cost Avoidance

• Positive ROI – Cost of automating the test case versus

manually running the test case while also taking into

consideration the cycle/iterations this test case may go

through during the test execution phase.

Cost avoidance looks at areas where automation saves on

delays, downtime or costly post-production fixes.

• Regular Environment Readiness testing

o Before each release or major configuration

change

o As new systems come on board

• Continuous Integration benefit; reducing release and

configuration time.

o Continuous testing provides a heartbeat for the

environment, this includes uptime and basic

regression functionality. Tests are executed

each time code is committed

o Defects are found earlier, often before they are

even deployed in a test environment. This

reduces defect triage and fix times, reducing

cost.

• Savings of ‘nn’ man-days in equivalent manual testing

o Further savings as this effort can be done out of

hours, helping keep critical path on track

• Savings NOT only test execution time

o There are also potential man-days saved as a

result of error detection.

▪ i.e. we avoid time fixing or investigating

$$ expensive errors

• How well can a manual tester verify data content?

o They can’t, especially not vs. automation tools!

o Particularly relevant to interface (SOA or ESB)

type testing

▪ E.g. payments hub, data interchange

systems

Return on Investment

Future savings looks at analysing the break-even point where

automation set-up has been paid back, and hence the benefits

from automation are self-funding.

• At the end of the automation project

o an automated test pack will be created

• Each time this test pack is executed

o will save in the region of ‘nn’ hours of manual

test execution

• Further savings can be realised on the ‘scripting time’ for

subsequent projects

o they don’t need to script the unchanged

components of the test pack

o Staff skills and experience has increased,

reducing script development time

• So as the programme or project matures (medium to long

term), savings in existing investments accrue

o So they become more ‘profitable’ (or have

increased ROI)

However, do not forget that there will still have to be some

ongoing maintenance.

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

19

 Data Generation

Automation is a powerful tool for data generation. There are a

number of ways in which test automation can address this

requirement. These are reviewed and the strengths /

weaknesses of them considered.

Options & Methods

• Option #1 - Drive the User Interface or Application
o e.g. a screen based automation tool

• Option #2 - Drive application/HTTP interface
o e.g. a sub-screen based tool

• Option #3 – Drive system-to-system interfaces
o e.g. tools that support messaging/service calls

• Option #4 – Specific database tools
o e.g. commercial tools designed for databases

• Option #6 – Your own test harnesses
o e.g. customised programs

The variety of options available is good – plenty of flexibility in

the choice(s) to be made. The table below illustrates options

with examples of the kind of tools that may be used to

automate our data.

Option Example Comments

Test Data
Generation
At screen level

Selenium,
UFT,
Tricentis
TOSCA

Scripted driving of the
User Interface

Test Execution
(en masse)
At browser level?

SoapUI,
Green Hat,
UFT,
LoadRunner

Scripted driving of the
HTTP
requests/responses

Test Execution
(en masse)
At interface level

SoapUI,
Green Hat,
UFT,
LoadRunner

Scripted driving of the
messages, MQ, Soap

Data Generation
At table/view
level

SQL Data
Generator

Flexible generation at
database with Ref
integrity

Programming Ruby, PHP,
VB, Java,
C#, many
language
options

Custom harnesses for
specific data tasks

Screen or UI based generation

The most obvious way to generate data is through the

application itself. Data injection via the UI has some merits,

provided the constraints and requirements are clearly

understood. UI generation can be used for simple data

requirements in unit testing or simple system testing

environments. One of the advantages is that anything behind

the scenes such as third-party systems is handled

automatically.

Following are the some of the Pros and Cons of screen based

generation.

PROs Comments

No messy correlation or
end to end integrity issues

We automatically benefit
from application integration

Can reuse existing
automation scripts

But dependent upon state of
development

CONs Comments

Screens have to be
available and working
functionally first

Can’t start ahead of UI
development

Only goes as fast as the
screens

Would not generate
thousands of entries as
quickly as other methods

Performance tool data generation

If thousands of data entries are required rather than tens or

hundreds, then driving the UI may be too slow. A performance

test tool such as LoadRunner can overcome scalability issues

since it is designed to run many instances at the same time.

Creating 1,000 new accounts via a Performance test tool may

take only a fraction of the time that a Test Automation tool like

UFT would take. Following are the Pros and Cons of using

performance tools in data generation:

PROs Comments

Faster and more scalable
than a UI based approach

Scripts are intended to
execute at volume,
speeding up data creation

Reuses existing scripts
just like QTP et al

But dependent upon state
of development (especially
hidden fields)

CONs Comments

Messy correlation or end
to end integrity issues?

Makes programming of the
scripts less intuitive and
more specialised

Screens or interfaces
also have to exist first!!

Still constrained by the state
of the application

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

20

Interface generation (SOA)

Applications today have a complex ‘n-tier’ architecture – the

advent of standardised interfaces such as JMS (Java

Messaging Systems), or HTTP/SOAP and web services

makes it possible to hook into these interfaces and harness

them for data generation.

A SOAP interface is well documented - indeed it is self-

describing. This means a web service will publish how to send

it a request and what the response looks like. The other side

of the contract is that the web service states clearly what data

is returned from this call.

Tools such as HP UFT, SoapUI or IBM Green Hat provide a

natural fit with this service-oriented model. Alternatives are

plentiful, including CA Lisa and TOSCA.

SQL Data Generation

Another data generation option that works at a lower level than

the application or interface it uses, is the database or specific

database generation tools. Again there are too many options

in the marketplace to provide a comprehensive coverage in

this course. Examples are:

• Microsoft Data Generator available through Visual Studio

• A range of Redgate tools which provide SQL Comparison
at schema (database design level) and content (database
values) level

• SQL Tool belt, which provides Backup / Restore /
Refactoring capabilities

• SQL Data Generation and also Data Cleanser

• Cloud tools such as database admin for Azure or EC2
instances

Pros and Cons of SQL Data generation are:

PROs Comments

It’s very fast to
execute compared
to UI approach

Generates thousands of rows of
related data in seconds

SQL tools are very
cost effective

Budget friendly

Extensible and
customisable

Built in ‘attributes’ easily change
plus add new attributes quickly

CONs Comments
You really need to
know and
understand the data
model

Can easily insert ‘duff data’ into
your database which may not be
relevant or work from your
UI/Front end so your tests may fail
due to quality of data

Not designed for
end users?

How to code regular expressions
or more complex Referential
Integrity rules

Tools mainly SQL
Server based

Can be hard to convince
stakeholders of the ROI of using
these tools

This works only on
a single source
database

Different approach would be
required on a GDW (General Data
Warehouse) or complex SOA
Enterprises

Custom Programming

The use of popular coding languages like Java, C# or Ruby

can also provide a harness to generate data. The power and

open-source-like extensibility are two significant factors. Pros

and Cons of scripting languages are:

PROs Comments

Very fast to execute
compared to UI approach

Generates 1000s of rows of
XML data in seconds

Open-source/widely known Low budget, skills required
to pick up

Extensible and
customisable

Huge community of add-
ons/plug-ins

Lots of potential uses Supported by the sheer
variety of add-ons

CONs Comments

Not as instantly data friendly
as SQL Generator

Could be used to access
database tables and
produce simple extracts

Not designed for end users! It’s for coders/developers

It’s open source May clash with in-house
culture and existing
investments

Planit Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

21

Automation Maturity Matrix

This section of the course looks at progress through stages in

test automation, starting from basic record/replay to

parameterisation through to keyword driven frameworks.

5 Maturity Levels

There are 5 categories of automation explored, although basic

record/replay is not considered mature. There must be at least

an element of reuse and re-execution to make it to what is

considered ‘managed’.

The interaction and inter-dependence between business

users and technicians who support automation is highlighted,

as automation changes from simpler parameterisation to

hybrid frameworks.

As the automation techniques improve and become more

object-oriented, the coupling between the tool of choice and

the application becomes more flexible, allowing users more

autonomy in the testing process.

Automation maturity is addressing the Develop & Deploy

stages of the Platform ™ Methodology

Level 1: Initial

At this level, automation has not been established as a testing

capability and the reliance is on manual testing.

Moving upwards requires:

• Capability uplift through training/or skilled resources

• Initiating a POC phase and assessment of suitable tools

• Piloting an automation project is also a good idea to
ensure it can align to your current software development
environment and processes

Level 2: Managed

Automation is deemed out-of-the-box if scripts are simply

record-and-playback. There are no customisations of scripts

and scripts may be implemented after manual testing

therefore applying a level of duplication to the effort. Limited

coverage is attained due to being ‘tightly coupled’ to the UI. If

the screen changes, rework is almost certainly required. There

is also lots of technical hand-holding as no synchronisation or

wait customisations have been applied. This level in the long

run requires higher maintenance effort due to the duplication

factors and the hand-holding.

Moving upwards requires:

• Enterprise Test Automation Strategy and Roadmap

• Capability Uplift and Training specific to usability,

maintainability and scalability

• Pilot Automation Project

Level 3: Defined

Operating at defined level means test automation is planned

and there is a level of reusability instilled within the test

automation solution. This level of reusability includes such

things like:

• Parameterised functions

• Object models that can be reused across scripts

Scripts are not just modular; they begin to make more

sophisticated use of functions and common libraries, so that

shared processes such as login, logoff are no longer

embedded in multiple scripts; they become generic services

or functions.

Test Automation is included as part of the testing phase and

tests are designed and written with automation in mind. This

level is a great starting point to maturing the capability within

your project and/or organisation.

Level 4: Management & Measurement

This level is planned before testing starts. Test Automation

focuses on ROI and a robust framework is developed that

applies reusability of code and automation libraries. Test

Automation covers many layers of the architecture model such

as UI, Integration (Services and middleware) etc.

Level 5: Optimisation

The most mature level of all. Characteristics of this level are:

• Software development techniques are integrated into test
automation processes – BDD, TDD

• Complete continuous integration and continuous delivery
solutions are in place and operating as required

• Automation is essential to delivery

• Tests drive the documentation and development activities
(TDD and BDD)

• Tests appropriately focus on the UI, Services and Code
(Unit)

• Great test coverage – confidence in automation over
manual

• Tests used in multiple environments and phases of
delivery

Processes are reliable, reusable and repeatable at this level.

Planit Software Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

22

Appendix B: Example Business Case

Major time pressure for industry testing. Key factors into business change:

• Automation will help the project deliver to these time frames

• Risk and criticality were high, helps ‘visualise’ benefits

The Programme will undergo many releases of software that will impact the new software/solution

• Changes being applied to the UI and UX designs were still being agreed – this was being impacted by a third-party vendor

• Duration of the business change was set to take 12+ months

• ROI improves because the cost of developing the tools is offset by the number of times you can use or execute the test assets

• Business API’s were developed and no changes were expected – these were ready

Long Term ROI

Automation ROI Inputs # Notes

Planning: Rate Per Day Days

 # of System Test Case 120 0.25 30

 # of end to End Test Cases 100 0.2 20

 Function #’s 20 0.25 5

 Object Repository 4

 % Scripts to be updated per run (10%) 10 11

SubTotal 70

Execution:

 # of Executions Per Release 6 100 6

 # of Releases Per Year 3 18

 # E2E (in addition to planning) 50 100 0.5

 # Legacy E2E 0 30 0

Rates:

 Automation Resource Rate ($K/day) 720

 Manual Resource Rate ($K/day) 560

Manual Calculations:

 Run Rate Per Release 8 112.5

 Run Rate Per Year 337.5

ROI Results

 Manual Automated

Cost Per Release $63,000 $53,568

Cost Per Year $189,000 $160,704

Initial Investment $0 $42,480

Cumulative Cost

Year 1 $189,000 $203,184

Year 2 $378,000 $363,888

Year 3 $567,000 $524,592

Year 4 $756,000 $685,296

Year 5 $945,000 $846,000

Year 6 $1,134,000 $1,006,704

Planit Software Testing // Guide //

Test Automation Fundamentals

testing consultancy // training + certification // test tools + solutions

23

 NEED ADVICE?

ASK OUR TEAM OF EXPERTS

testing consultancy // training + certification // test tools + solutions

AUS T R AL I A
1300 992 967

infoau@planittesting.com

NE W ZE AL AN D
0800 752 648

infonz@planittesting.com

UNITED KINGDOM
0203 457 5020

infouk@planittesting.com

www.planittesting.com

